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Abstract 
 
This paper describes the application of a structural reanalysis technique called the Virtual 
Distortion Method, coupled with an optimisation technique called the Gradient Projection 
Method, to the damage identification problem for the case of the static structural analysis. The 
outline of the Virtual Distortion Method is provided and the fundamentals of the Gradient 
Projection Method are explained. Subsequently the damage identification problem for the 
static load case is posed. Numerical example of a truss structure is demonstrated. Conclusions 
are presented with the emphasis on advantages of the employed methods in numerical 
computations. 
 
 

1. Introduction 
 
The problem of damage identification in structural analysis is usually posed as a dynamic task 
of wave propagation. An excitation signal is applied and the resulting dynamic response is 
examined. A lot of research has been done on efficient signal processing methods analysing 
perturbations to the original signal due to structural damage, e.g. [1] - [4]. However, the 
currently used methods often encounter problems with identifying the damage properly and 
the related numerical cost may be considerable. A novel approach for solving the inverse 
dynamic problem has been proposed by Holnicki-Szulc and Zielinski [5]. 
 
 The paper is a first-stage study of the damage identification problem tackled in the 
framework of the Virtual Distortion Method (VDM) and treated as a static task. For solving 
the optimisation problem involved, a constrained optimisation technique called the Gradient 
Projection Method (GPM) has been successfully employed. Advantage has also been taken of 
the Singular Value Decomposition (SVD), which is a matrix qualitative analysis method. 
 
 The continuation of the paper (cf. [6]) will deal with the VDM-based approach to the 
inverse dynamic problem, which may have practical applications to damage identification in 
various engineering structures (an experimental verification of feasibility of the VDM-based 
damage identification concept will be provided). The problem formulations in this paper and 
paper [6] are analogous, although the optimisation methods employed are different. 
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The Gradient Projection Method has been originated by Rosen [7], [8] in the early 1960’s and 
then modified by Haug and Arora [9] in the late 1970’s. Concise description of the method 
applied to structural analysis, given in Haftka and Gurdal [10], has been the basis for the Sec. 
3 of the paper. 
 
 Most problems in structural analysis are constrained optimisation problems. The GPM 
is one of the techniques, which is able to minimise an objective function f(x) subject to 
equality h(x)=0 and/or inequality constraints g(x)≥0. The inequality constraints divide the 
design space into two domains – the feasible domain, where the constraints are satisfied and 
the infeasible domain, where the constraints are violated. In many structural analysis 
problems, the objective function minimum is found on the boundary between the feasible and 
infeasible domains. The constraints, which belong to the boundary g(x)=0, are called active 
constraints and have great influence on the optimal solution. The constrains, which belong to 
the feasible domain g(x)>0 are inactive and could actually be removed without affecting the 
solution. The essence of the GPM is to find the optimum in the subspace tangent to the active 
constraints. Therefore the notion of the active constraints is so important here. 
 
 In the VDM-based damage identification problem we minimise certain function 
subject to inequality constraints. As we will see later on, the less damaged the structure is, the 
more active constraints are expected at the optimum. This justifies the choice of the GPM, 
which operates on active constraints in the optimisation process. In the engineering practice 
we often look at structures to which high technical requirements apply, e.g. pipelines. If such 
a structure is severely damaged, it is no longer operational. So we should rather expect a small 
number of structural defects and consequently, a large number of active constraints at our 
optimal solution of the damage identification problem. 
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2. Outline of the Virtual Distortion Method 
 

2.1. Principal postulates 
 
The Virtual Distortion Method has been developed for over 20 years. It may be simply 
classified as a fast reanalysis technique, according to Akgun, Garcelon and Haftka [11]. This 
method is very efficient if we know an original response of the structure and then want to 
introduce some modifications to its behaviour without repeating the whole analysis. With the 
VDM we are able to solve various problems of structural mechanics e.g. progressive collapse, 
structural remodelling, damage identification, damping of vibration, adaptive structure design 
and other. 
 
 Let us consider introducing a field of initial strains εεεεo (called virtual distortions) into a 
structure. This action will induce residual strains and stresses in the structure, expressed as 
follows (cf. [12]-[15]): 
 
 oR Dε=ε ,                    (2.1) 
 ( ) oR IDE ε−=σ ,                   (2.2) 
 
where D denotes the so-called influence matrix telling how the whole structure responds to a 
unit virtual distortion εo=1 imposed in a chosen location, E denotes the constitutive matrix 
and I – the identity matrix. Assume that application of external load to the structure provokes 
linear elastic response εL, σL, which will be superposed over the residual response εR, σR. 
Thus in view of (2.1), (2.2), we get: 
 
 oLRL Dε+ε=ε+ε=ε ,                  (2.3) 
 ( ) ( )ooLRL EIDEE ε−ε=ε−+ε=σ+σ=σ .                (2.4) 
 
Virtual distortion field introduced in the structure may be twofold. We shall distinguish 
between the purely virtual distortions εo (having no physical meaning) used for modelling the 
structural geometry modifications (e.g. changes of cross-sectional area) and plastic-like 
distortions βo used for simulating physical non-linearities in the structure. The plastic-like 
distortions are identified with plastic strains: 
 
 plo ε≡β .                    (2.5) 
 
Thus in the elasto-plastic range of material behaviour, formulas (2.3), (2.4) have the following 
form: 
 
 ( )ooL D β+ε+ε=ε ,                   (2.6) 
 ( )( ) ( )ooooL EIDEE β−ε−ε=β+ε−+ε=σ .                (2.7) 
 
Relation between nodal forces f and generalised stresses σ for an element is known via the 
geometry matrix G, which also links generalised strains ε and nodal displacements q: 
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 σ= TGf ,                    (2.8) 
 Gq=ε .                    (2.9) 
 
Let us now take into account the structural geometry modifications exemplified by changes of 
Young’s modulus. In a general case this means the analysis of a modified constitutive matrix 
Em. In view of (2.7) and (2.8) we can express internal forces in the original structure with 
introduced virtual distortion field (called distorted structure) and in the modified structure, as 
follows: 
 
 ( )ooTEGf β−ε−ε= ,                 (2.10) 
 ( )o

mmm
T

m EGf β−ε= .                 (2.11) 
 
The main postulate of the VDM in structural remodelling requires that strains (including 
plastic strains) and forces in the distorted and modified structure should be equal: 
 
 m

o
m

o
m ff,, =β=βε=ε .                (2.12) 

 
This postulate leads to the following relation: 
 
 ( ) ( )o

m
TooT EGEG β−ε=β−ε−ε .               (2.13) 

 
The above formulation applies to any structure, which is (e.g. truss) or can be (e.g. plate) 
made discrete in the sense of the Finite Element Method.  
 
 Let us confine our considerations in this paper to truss structures in the elastic range. If 
so, the geometry matrix G becomes identity and the plastic-like distortions βo do not occur. 
Equation (2.13) provides the coefficient of the stiffness (Young’s modulus) change for each 
truss element i as the ratio of the modified parameter to the initial one: 
 

 
( ) ( )

i

o
ii

i

im

i

im
i A

A
E

E
ε

ε−ε===µ  .               (2.14) 

 
This coefficient is identical for the change of cross-sectional area of a truss element. The 
variation of the coefficient in the range 0≤µ≤1 may be considered as a measure of structural 
damage in the element. Substituting (2.3) into (2.14) we get a set of equations for εo, which 
must be solved to model an arbitrary damage of the structure with the coefficient µ. Indices i, 
j run through the damaged locations. 
 

 � ε−=ε��
�

�
��
�

�

µ−
δ

−
j

L
i

o
j

i

ij
ij 1

D .                (2.15) 

 

2.2. Generation of the influence matrix 
 
The influence matrix introduced in the previous section forms a numerical basis for the VDM. 
It has been mentioned that component Dij of the matrix determines the strain in structural 
element i, caused by unit distortion (initial strain) applied to element j. Thus, the influence 



Damage Identification by the Static Virtual Distortion Method 
 

Page 5 

matrix is (generally) non-symmetric. For truss structures with n elements, its dimension is n x 
n. 
 
 To compute one column of the influence matrix we must calculate responses in all 
structural elements caused by a local load properly applied to one of them. The so-called 
equivalent load (a pair of axial forces in case of truss structures) must correspond to the unit 
strain of the unconstrained element (see the single diagonal element in Fig. 2.1 after applying 
a pair of forces). The response of the structure to the imposition of the unit virtual distortion 
εo

4=1 is depicted by the “skewed” configuration in Fig. 2.1. 
 

ε0
4=1

1

2

3

45

 
 

Fig. 2.1  Influence of the unit distortion applied in one element 
 
Note that the static influence matrix for statically determinate structures becomes identity 
(zero redundancy means no inter-relations between the members) and the VDM loses its 
major tool. 
 
 If we assume that the virtual distortion depends on time (as well as for example the 
corresponding load, which is used to realise the distortion) then we can make use of the VDM 
in solving dynamic problems (cf. [6]). Consequently, the corresponding influence matrix will 
also be time-dependent, so it will be given another, third dimension. 
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3. Fundamentals of the Gradient Projection Method 
 

3.1. Linear constraints 
 
The Gradient Projection Method is based on the idea of projecting the direction of 
improvement (i.e. the direction in which the objective function value decreases) into the 
subspace tangent to the active constraints. For the case of linear constraints the optimisation 
problem can be posed in the following way: 
 
 min )x(f                     (3.1) 

 subject to:  ( ) g

m

1i
jiijj m,...,1j,0bxnxg =� ≥−=

=
,               (3.2) 

 

where 
i

j
ij x

g
n

∂
∂

=  i.e. the gradients of the constraints are stored column-wise. Subscript i runs 

through the number of design variables m whereas subscript j runs through the number of 
constraints mg. 
 
 If we select only the ma active constraints then the constraints (3.2) may be written as 
follows: 
 
 0bxNg T

a =−= ,                   (3.3) 
 
where the matrix N stores gradients of the constraints in columns. 
 
We minimise the objective function value by determining the direction of improvement s and 
looking for a current design variable vector x in an iterative way: 
 
 sxx k1k α+=+ ,                   (3.4) 
 
where α denotes the step length. 
 
 The basic assumption of the GPM is that the design variable vector x lies in the 
subspace tangent to the active constraints, i.e. both the former design point xk and the current 
one xk+1 satisfy equation (3.3). This assumption implies the following condition: 
 
 0sNT = .                    (3.5) 
 
In order to find the direction of improvement s let us now apply the steepest descent approach 
in minimising the objective function, i.e. let us look for a direction with the most negative 
directional derivative: 
 
 min  fsT∇ ,                    (3.6) 
 
satisfying the equation (3.5) and being additionally normalised: 
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 1ssT = .                    (3.7) 
 
We shall now construct the Lagrange function with the multipliers λ and η in order to get rid 
of the constraints (3.5) and (3.7) and make the optimisation problem unconstrained: 
 
 ( ) ( )1ssNsfs,,sL TTT −η−λ−∇=ηλ .                 (3.8) 
 
In order to determine the stationary point of the Lagrange function we must zero the first 
derivative of L with respect to s: 
 

 0s2Nf
s
L =η−λ−∇=

∂
∂

.                  (3.9) 

 
Pre-multiplying (3.9) by NT and making use of (3.5) we can determine the Lagrange 
multipliers λ as: 
 

 ( ) fNNN T1T ∇=λ −
.                 (3.10) 

 
The Kuhn-Tucker necessary criteria for optimality must be satisfied, so only non-negative 
Lagrange multipliers λ≥0 are of interest in the optimisation process. Constraints 
corresponding to negative values of λ are eliminated. 
 
 Substituting (3.10) into (3.9) we obtain: 
 

 fP
2
1

s ∇
η

= ,                  (3.11) 

 
where P is the so-called projection matrix expressed in terms of the matrix N as follows: 
 

 ( ) T1T NNNNIP
−−= .                 (3.12) 

 
To show that P has indeed the projection property it is enough to choose an arbitrary vector w 
and check that the vector Pw lies in the subspace tangent to the active constraints, i.e. the 
requirement (3.5) is met 
 
 0PwNT = ,                  (3.13) 
 
which is easy to verify by taking into account the definition of P given in (3.12). Note that 
P=0 if N is a non-singular, square matrix. Then the tangent subspace reduces to a point. 
 
 The factor 1/2η is not significant as s defines only the direction of improvement, so 
instead of (3.11) we use the steepest descent direction in the tangent subspace: 
 
 fPs ∇−= .                  (3.14) 
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Substituting (3.12) into (3.14) and making use of the definition (3.10) we obtain an 
equivalent, useful formula for s, which will be used later in the algorithm for constructing the 
so-called projection move: 
 
 ( )λ−∇−= Nfs .                 (3.15) 
 

3.2. Non-linear constraints 
 
For the case of non-linear constraints we base on linear approximation of (3.2) in the form: 
 
 ( ) ( )ii

T
jijj xxgxgg −∇+= .                (3.16) 

 
Except for the projection move we also look now for the so-called restoration move ii xx −  in 
the tangent subspace (i.e. ( ) 0xxP ii =− ), which reduces gj to zero. It can be checked that the 
desired restoration move is: 
 

 ( ) ( )ia

1T
iiNRESTORATIO xgNNNxxx

−
−=−= ,              (3.17) 

 
where ga is the vector of active constraints (cf. (3.3)). 
 
 In the modification of the GPM by Haug and Arora [9] it is proposed to specify a 
desired reduction γ (0≤γ≤1) in the objective function value, so that: 
 
 ( ) ( ) ( )k1kk xfxfxf γ≈− + .                (3.18) 
 
Using a linear approximation with (3.4) and the assumption (3.18), we get the following 
projection move: 
 

 
( )

s
fs

xf
sx T

i
PROJECTION ∇

γ−=α= .                (3.19) 

 
Haug and Arora’s procedure is then a combination of the projection and restoration moves, as: 
 
 NRESTORATIOPROJECTIONk1k xxxx ++=+ ,              (3.20) 
 
where (3.4), (3.17) and (3.19) are used. 
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4. GPM in VDM-based damage identification for static problems 
 

4.1. Problem formulation 
 
We shall now pose the optimisation problem of structural damage identification in the 
framework of the Virtual Distortion Method. Let us minimise the following function: 
 

 ( )� ε−ε
A

2

A
M
Amin ,                   (4.1) 

 
which can be interpreted as an average departure of the total strain εA from the experimentally 
measured strain εA

M in locations A, capable of identifying the structural damage (called 
sensors hereinafter). Taking advantage of the VDM formulation (cf. (2.3)) we can decompose 
the strain εA into two parts: 
 
 � ε+ε=ε+ε=ε

A

o
iAi

L
A

R
A

L
AA D ,                  (4.2) 

 
where εA

L denotes the response of undamaged structure, D is the influence matrix and εo is the 
virtual distortion vector (see Sec. 2). As the component εA

L is constant for a given external 
static load, the so-called residual strain component εA

R may only be varying in the 
optimisation process with the virtual distortion εo as the design variable. 
 
 We shall measure the structural damage in each element i with the help of the 
coefficient µi introduced by formula (2.14) i.e. with the ratio of cross-sectional area of a 
damaged element to the undamaged one. Consequently, we have to impose appropriate 
constraints on this coefficient. As we examine the physical process of deterioration of the 
element cross-section (e.g. due to corrosion), we are interested in such vector µi, which 
complies with the constraints allowing only for reduction of the cross-sectional area. On the 
other hand, only positive values of the vector µi may be considered in view of its definition 
(cf. (2.14)). Thus the constraints take the following form: 
 

 m,...,1i,10.e.i10
i

o
ii

i =≤
ε

ε−ε≤≤µ≤ .                (4.3) 

 
Each coefficient µi depends non-linearly upon the virtual distortion vector εo

i, so the 
constraints (4.3) are non-linear. 
 
 The gradients of the objective function and the right-hand side constraints (4.3) are 
expressed in terms of the design variable εo as follows: 
 

 ( )� ε−ε−=
ε∂

∂=∇
A

A
M
AAio

i

D2
f

f    and   ( )2
j

o
jjijji

o
i

j
ij

Dg
nN

ε
ε−εδ

=
ε∂

∂
== .             (4.4) 
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We assume that every element of the structure may be subject to damage, so the index i runs 
through all structural elements m, the index j runs through the number of active constraints 
ma, whereas the index A runs through the number of sensors ms. 
 

4.2. Numerical algorithm 
 
In order to solve the damage identification problem posed by (4.1) and (4.3) we will use the 
Gradient Projection Method described in the Sec. 3. All symbols used beneath are compatible 
with those used previously. 
 
 Determination of the original projection matrix P (cf. (3.12)) may cause numerical 
problems because of the necessity of finding the inverse of the matrix NTN. To avoid the 
inconvenience, an original algorithm has been developed, employing the GPM and making 
use of the Singular Value Decomposition (SVD) [16] for solving sets of equations. The 
algorithm is nested in the VDM programming environment (the influence matrix D is pre-
computed) and performs the following steps: 
 

1) Determine the matrix N and the vector ∇f on the basis of (4.4) 
2) Compute the matrix NTN and the vector NT∇f 
3) Solve the system  
 
  ( ) fNNN TT ∇=λ                    (4.5) 
 
  for Lagrange multipliers λ using the SVD method (instead of using (3.10) directly) 
4) If λ<0, eliminate the corresponding constraints, go back to 1) and redefine the 

matrix of active constraint gradients N, else proceed 
5) Compute the projection move (cf. (3.15), (3.19)) as 
 

 
( )

( )( )λ−∇
λ−∇∇

γ−= Nf
Nff

xf
x T

i
PROJECTION                 (4.6) 

 
 with the desired reduction of the objective function, e.g. γ=0.3 
6) Determine the active constraints vector ga on the basis of (3.3) 
7) Solve the system  
 
  ( ) a

T g'NN =λ                    (4.7) 
 
  for auxiliary multipliers λ’ using the SVD method (instead of using (3.17) directly) 
8) Compute the restoration move (cf. (3.17)) as 
 
 'Nx NRESTORATIO λ−=                   (4.8) 
 
9) Calculate the design variable in the next iteration as a combination of the 

projection and restoration moves according to (3.20) 
10) Go back to 1), proceed until the termination criterion is met 
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4.3. Heuristic amendments to the algorithm 
 
The algorithm described in 4.2 has been implemented in the Fortran code named DAMIS after 
DAMage Identification for Statics [17].  
 
 Some heuristic amendments have been added to the algorithm to improve its 
efficiency. These are: 
 

• To avoid singularity or ill-conditioning of the matrix NTN (a situation in which the 
condition number of the matrix exceeds the assumed limit value, e.g. 103) in solving 
the set (40) with the SVD method, the constraints corresponding to “corrupted 
equations” are eliminated from the set (similarly to the negative λ’s in Point 4 of the 
algorithm). In this way the SVD provides a reliable solution of an acceptably low 
residual. This problem occurs when some elements of the statically loaded structure 
are not strained at all or their strains are by several orders of magnitude lower than the 
strains in other elements. 

 
• Instead of performing the proper restoration move according to (4.7) and (4.8), which 

requires solving a set of equations by SVD, it is equivalent to zero the design variables 
(virtual distortions εo) for the constraints classified as active. 

 
• As we expect the optimum with a great number of active constraints µ=1 (undamaged 

elements), the formally imposed left-hand side constraint 0≤µ has been disregarded 
(cf. (4.3)). Consequently the matrix N has become smaller (cf. (4.4)). However, if the 
constraint 0≤µ is violated (the fact observed very rarely), the design variables are 
zeroed, i.e. the condition µ=1 is imposed. 
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5. Numerical example of a truss structure 
 

5.1. Presentation of results 
 
A 40-element cantilever truss structure, shown in Fig. 5.1a, consisting of 8 repeatable 5 m x 5 
m segments, has been analysed to test the DAMIS code. The structure was statically loaded 
with the vertical force P=200 kN. All elements have the same tubular cross-sectional area 
A=201 cm2 (65 cm diameter, 1 cm thickness) and Young’s modulus E=210 GPa. The 
assumed geometry was meant to reflect the dimensions of real engineering structures 
(pipelines).  
 

1

2

3

4

5

36

37

38

39

40

31

32

33

34

35

26

27

28

29

30

21

22

23

24

25

16

17

18

19

20

11

12

13

14

15

6

7

8

9

10

P

 
 

Fig. 5.1a  Two sensors (dots) for precise identification of one damaged element No. 20 
 
 First, only one element No. 20 (see Fig. 5.1a) was chosen as damaged with the 
corresponding µ20=0.5. The damage identification analysis was carried out assuming just one 
sensor in the same segment, from which the damaged element was picked up. Such “one by 
one” damage detection capability was checked and the elements were ranked on the basis of 
the obtained µ20 value in the following order: No. 16 (µ20=0.507),  No. 20 (µ20=0.595), No. 19 
(µ20=0.783), No. 18 (µ20=0.962). 
 
 In order to improve this result, another sensor (second in the ranking of “one sensor – 
one damage” detection) was added in the element No. 20, so that two sensors in elements 
Nos. 16 and 20 (marked by dots in Fig. 5.1a) were detecting one damage in the segment. The 
obtained identification results are shown in Fig. 5.1b, which depicts variations of the 
coefficient µ for an undamaged member (straight line marked by squares), the coefficient µ20 
(curve marked by circles) and the objective function value (curve marked by rhombuses) as 
the optimisation process goes along. We can see that the damage in element No. 20 was 
precisely detected with all other elements being undamaged. 
 
 Subsequently, a pattern of 8 damage locations of various intensities was chosen such 
that one damage location was examined per segment. The corresponding damage coefficients 
were as follows: µ1=0.9, µ9=0.2, µ13=0.8, µ20=0.3, µ21=0.7, µ29=0.4, µ33=0.6, µ40=0.5 (see 
Figs. 5.2a and 5.2b). The information on the selected element capability of detecting damage, 
collected for the one damage case, was utilised. In general however, the trial and error 
approach was applied in determination of sensor locations. The minimum number of sensors 
giving the optimal solution turned out to be 12 (see dotted elements Nos. 1, 5, 8, 13, 14, 16, 
21, 25, 28, 33, 34, 36 in Fig. 5.2a). The obtained results are depicted in Fig. 5.2b. 
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 Alternatively, the same results were achieved by locating 20 sensors (dotted in Fig. 
5.2c) in all 16 horizontal elements plus 4 diagonal elements placed in every other segment 
(e.g. in compressive diagonal elements Nos. 5, 15, 25, 35). 
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Fig. 5.1b  Results of the identification process for 1 damage case 
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Fig. 5.2a  Minimum number of sensors (12) for identification of 8 damaged elements 
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8 damages case
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Fig. 5.2b  Results of the identification process for 8 damages case 
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Fig. 5.2c  Configuration of 20 sensors for identification of 8 damaged elements 
 
Many vertical elements of the truss are lowly strained at the bending-provoking vertical force. 
As a consequence, the algorithm encounters difficulties in detecting damage in such elements. 
A way to get rid of the problem is to apply such load to which vertical elements are more 
sensitive, e.g. the load proposed in Fig. 5.3a. A damage identification was performed for the 
combined bending and axial load with one damage in the vertical element No. 17 (µ17=0.5). 
Three sensor locations (in elements Nos. 17, 20, 25, marked with dots in Fig. 5.3a) provided 
precise identification of the assumed damage. The results are shown in Fig. 5.3b. 
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Fig. 5.3a  Three sensors for precise identification of damage in one vertical element 
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Fig. 5.3b  Results of the identification process for 1 damage in a vertical member 

 
 

5.2. Discussion on results and numerical simulation 
 
In order to model various damage intensities in 8 elements, the set of equations (2.15) has to 
be solved for the assumed vector µ. The resultant distortions εo are imposed as an initial 
strain-type load and together with the external load P produce the damaged structure response 
εM (cf. (4.1)), which should be collected from measurements in real-life identification. 
 
 At the start of simulation, the design variables are zeroed (εo=0) and all constraints are 
active with µ=1. Thus the number of linearly independent active constraints is equal to the 
number of design variables and the tangent subspace reduces to a single point (P=0). 
Consequently the direction of improvement s cannot be determined. The situation changes 
when negative Lagrange multipliers corresponding to active constraints are eliminated. Then 
the matrix N becomes non-square (more rows than columns) and the algorithm may proceed. 
 
 A decrease of the objective function value by 7 orders of magnitude was set to be the 
criterion of computational analysis termination. Slight inaccuracies of the obtained damage 
coefficient results are due to this choice. More stringent criterion would result in a greater 
number of iterations. 
 
 The number of iterations needed to arrive at the optimal solution was quite 
satisfactory. With the arbitrarily chosen reduction of the objective function value γ=0.3, the 
optimum was reached after approximately 70 iterations. The computation took a few seconds 
with the AMD Athlon 1900+ XP processor. 
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 The minimum number of sensors was determined thanks to the assumption of the 
damage pattern for numerical modelling. This was a great prompt on how to locate sensors 
optimally basing on results of the “one by one” damage detection ranking. In real life 
however, the damage distribution is something to be found. We would not be given any hints 
on optimal sensor location. Therefore it is practical to devise a certain scheme for locating the 
sensors, able to identify an arbitrary damage pattern. Such scheme is proposed in Fig. 5.2c, 
where all 16 horizontal elements plus 4 diagonals placed in every other segment are chosen 
for sensor locations. 
 
 A threshold in damage identification capability was observed. In the analysed 
example, the resulting virtual distortions corresponding to the detected damaged locations are 
more or less of the same order of magnitude. However, if they happen to differ by more than 
2 orders of magnitude, the damage corresponding to “small” distortions cannot be detected. A 
“small” distortion means a relatively small damage intensity of the element (say µ=0.98). One 
should be aware that identification of such a damage would also be a serious problem in 
experimental measurements. 
 
 Sometimes, with a set of sensors being far from optimal, an increase of the objective 
function value is observed during the analysis (in spite of the desired 30% decrease) and the 
algorithm is forced to stop. This indicates that the chosen number of sensors is insufficient or 
their location is inappropriate for the damage identification posed as a static problem. There is 
simply not enough information for the optimisation algorithm to produce a good solution. 
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6. Final remarks 
 
A new damage identification method, based on the Virtual Distortion Method as a structural 
reanalysis tool and on the Gradient Projection Method as an optimisation technique, has been 
proposed for the static load case. The GPM seems to be very well suited for the damage 
identification problem posed in Sec. 4.1 as it operates on the active constraints, which have 
crucial influence on the solution of the problem. In many real-life cases we would expect only 
local damage (inactive constraints) in the structure with most of the elements left undamaged 
(active constraints in the framework of the optimisation method used). 
 
 It has been shown that the GPM & VDM methods linked together produce appealing 
identification results (several damaged elements with various damage intensities precisely 
detected) for a properly chosen set of sensors (the elements of the structure, which contribute 
to the objective function value). There is also the third method behind the optimal solution – 
the SVD method – which provides very useful qualitative analysis of matrices. 
 
 Optimal location of sensors depends upon the external load applied and the 
corresponding structural response. It seems that the load provoking bending behaviour is 
more informative as far as damage identification capability of sensors is concerned (cf. Figs. 
5.1a, 5.2a). Axial load may be treated as auxiliary in cases when elements are insensitive to 
the bending-type load (cf. Fig. 5.3a). 
 
 The main numerical problem encountered is caused by singularity or ill-conditioning 
of the matrix NTN, which is due to unstrained or lowly strained elements (cf. Sec. 4.3). This 
may be overcome e.g. by applying such an external load that all elements are sufficiently 
strained (cf. Fig. 5.3a). Another way of avoiding the problem is to set a threshold for the 
condition number of the matrix we are still pleased with. The latter can be easily done by 
employing the SVD method in the analysis. Fortran code for the SVD algorithm can be found 
in [16]. 
 
 The principal purpose of the presented static case was to prepare the background for 
dynamic case of VDM-based damage identification. Practical aspects of the concept 
feasibility for the static case (e.g. magnitude or direction of the applied forces in the presented 
numerical example) have been disregarded because experimental verification will be provided 
only for dynamics. Therefore in the static case the optimisation for finding the minimum of 
the defined objective function was performed assuming only noise-free response εM of the 
structure (modelled numerically instead of measured experimentally). 
 
 Further research will be concentrated on the VDM-based inverse dynamic analysis of 
damage identification utilising the phenomenon of elastic waves propagation (cf. [6]). A 
Fortran code DAMID for the dynamic case, analogous to the newly created code DAMIS for 
the static case, will be developed. 
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